skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Solomon, Justin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite dropout’s ubiquity in machine learning, its effectiveness as a form of data augmentation remains under-explored. We address two key questions: (i) When is dropout effective as an augmentation strategy? (ii) Is dropout uniquely effective under these conditions? To explore these questions, we propose Deep Augmentation, a network- and modality-agnostic method that applies dropout or PCA transformations to targeted layers in neural networks. Through extensive experiments on contrastive learning tasks in NLP, computer vision, and graph learning, we find that uniformly applying dropout across layers does not consistently improve performance. Instead, dropout proves most beneficial in deeper layers and can be matched by alternative augmentations (e.g., PCA). We also show that a stop-gradient operation is critical for ensuring dropout functions effectively as an augmentation, and that performance trends invert when moving from contrastive tasks to supervised tasks. Our analysis suggests that Deep Augmentation helps mitigate inter-layer co-adaptation---a notable issue in self-supervised learning due to the absence of labeled data. Drawing on these insights, we outline a procedure for selecting the optimal augmentation layer and demonstrate that Deep Augmentation can outperform traditional input-level augmentations. This simple yet powerful approach can be seamlessly integrated into a wide range of architectures and modalities, yielding notable gains in both performance and generalization. 
    more » « less
    Free, publicly-accessible full text available May 14, 2026
  2. Score-based generative models (SGMs) sample from a target distribution by iteratively transforming noise using the score function of the perturbed target. For any finite training set, this score function can be evaluated in closed form, but the resulting SGM memorizes its training data and does not generate novel samples. In practice, one approximates the score by training a neural network via score-matching. The error in this approximation promotes generalization, but neural SGMs are costly to train and sample, and the effective regularization this error provides is not well-understood theoretically. In this work, we instead explicitly smooth the closed-form score to obtain an SGM that generates novel samples without training. We analyze our model and propose an efficient nearest-neighbor-based estimator of its score function. Using this estimator, our method achieves competitive sampling times while running on consumer-grade CPUs. 
    more » « less
    Free, publicly-accessible full text available April 23, 2026
  3. Penalizing the nuclear norm of a function's Jacobian encourages it to locally behave like a low-rank linear map. Such functions vary locally along only a handful of directions, making the Jacobian nuclear norm a natural regularizer for machine learning problems. However, this regularizer is intractable for high-dimensional problems, as it requires computing a large Jacobian matrix and taking its SVD. We show how to efficiently penalize the Jacobian nuclear norm using techniques tailor-made for deep learning. We prove that for functions parametrized as compositions f=g∘h, one may equivalently penalize the average squared Frobenius norm of Jg and Jh. We then propose a denoising-style approximation that avoids the Jacobian computations altogether. Our method is simple, efficient, and accurate, enabling Jacobian nuclear norm regularization to scale to high-dimensional deep learning problems. We complement our theory with an empirical study of our regularizer's performance and investigate applications to denoising and representation learning. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  4. While 2D diffusion models generate realistic, high-detail images, 3D shape generation methods like Score Distillation Sampling (SDS) built on these 2D diffusion models produce cartoon-like, over-smoothed shapes. To help explain this discrepancy, we show that the image guidance used in Score Distillation can be understood as the velocity field of a 2D denoising generative process, up to the choice of a noise term. In particular, after a change of variables, SDS resembles a high-variance version of Denoising Diffusion Implicit Models (DDIM) with a differently-sampled noise term: SDS introduces noise i.i.d. randomly at each step, while DDIM infers it from the previous noise predictions. This excessive variance can lead to over-smoothing and unrealistic outputs. We show that a better noise approximation can be recovered by inverting DDIM in each SDS update step. This modification makes SDS's generative process for 2D images almost identical to DDIM. In 3D, it removes over-smoothing, preserves higher-frequency detail, and brings the generation quality closer to that of 2D samplers. Experimentally, our method achieves better or similar 3D generation quality compared to other state-of-the-art Score Distillation methods, all without training additional neural networks or multi-view supervision, and providing useful insights into relationship between 2D and 3D asset generation with diffusion models. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  5. We present a discretization-free scalable framework for solving a large class of mass-conserving partial differential equations (PDEs), including the time-dependent Fokker-Planck equation and the Wasserstein gradient flow. The main observation is that the time-varying velocity field of the PDE solution needs to be self-consistent: it must satisfy a fixed-point equation involving the probability flow characterized by the same velocity field. Instead of directly minimizing the residual of the fixed-point equation with neural parameterization, we use an iterative formulation with a biased gradient estimator that bypasses significant computational obstacles with strong empirical performance. Compared to existing approaches, our method does not suffer from temporal or spatial discretization, covers a wider range of PDEs, and scales to high dimensions. Experimentally, our method recovers analytical solutions accurately when they are available and achieves superior performance in high dimensions with less training time compared to alternatives. 
    more » « less
  6. We propose a variational technique to optimize for generalized barycentric coordinates that offers additional control compared to existing models. Prior work represents barycentric coordinates using meshes or closed-form formulae, limiting the choice of objective function. In contrast, we directly parameterize the continuous function mapping any coordinate in a polytope’s interior to its barycentric coordinates using a neural field. Enabled by our theoretical characterization of barycentric coordinates, we construct neural fields parameterizing valid coordinates. We demonstrate flexibility using various objective functions, validate our algorithm, and present several applications. 
    more » « less
  7. We propose a variational technique to optimize for generalized barycentric coordinates that offers additional control compared to existing models. Prior work represents barycentric coordinates using meshes or closed-form formulae, limiting the choice of objective function. In contrast, we directly parameterize the continuous function mapping any coordinate in a polytope’s interior to its barycentric coordinates using a neural field. Enabled by our theoretical characterization of barycentric coordinates, we construct neural fields parameterizing valid coordinates. We demonstrate flexibility using various objective functions, validate our algorithm, and present several applications. 
    more » « less
  8. Mixup is a popular regularization technique for training deep neural networks that improves generalization and increases robustness to certain distribution shifts. It perturbs input training data in the direction of other randomly-chosen instances in the training set. To better leverage the structure of the data, we extend mixup in a simple, broadly applicable way to k-mixup, which perturbs k-batches of training points in the direction of other k-batches. The perturbation is done with displacement interpolation, i.e. interpolation under the Wasserstein metric. We demonstrate theoretically and in simulations that k-mixup preserves cluster and manifold structures, and we extend theory studying the efficacy of standard mixup to the k-mixup case. Our empirical results show that training with k-mixup further improves generalization and robustness across several network architectures and benchmark datasets of differing modalities. For the wide variety of real datasets considered, the performance gains of k-mixup over standard mixup are similar to or larger than the gains of mixup itself over standard ERM after hyperparameter optimization. In several instances, in fact, k-mixup achieves gains in settings where standard mixup has negligible to zero improvement over ERM. 
    more » « less
  9. We introduce an optimal transport-based model for learning a metric tensor from cross-sectional samples of evolving probability measures on a common Riemannian manifold. We neurally parametrize the metric as a spatially-varying matrix field and efficiently optimize our model's objective using a simple alternating scheme. Using this learned metric, we can non-linearly interpolate between probability measures and compute geodesics on the manifold. We show that metrics learned using our method improve the quality of trajectory inference on scRNA and bird migration data at the cost of little additional cross-sectional data. 
    more » « less
  10. We propose a general convex optimization problem for computing regularized geodesic distances. We show that under mild conditions on the regularizer the problem is well posed. We propose three different regularizers and provide analytical solutions in special cases, as well as corresponding efficient optimization algorithms. Additionally, we show how to generalize the approach to the all pairs case by formulating the problem on the product manifold, which leads to symmetric distances. Our regularized distances compare favorably to existing methods, in terms of robustness and ease of calibration. 
    more » « less